Extensions 1→N→G→Q→1 with N=C32 and Q=SD16

Direct product G=N×Q with N=C32 and Q=SD16
dρLabelID
C32×SD1672C3^2xSD16144,107

Semidirect products G=N:Q with N=C32 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C32⋊SD16 = AΓL1(𝔽9)φ: SD16/C1SD16 ⊆ Aut C3298+C3^2:SD16144,182
C322SD16 = C322SD16φ: SD16/C2D4 ⊆ Aut C32244-C3^2:2SD16144,118
C323SD16 = Dic6⋊S3φ: SD16/C4C22 ⊆ Aut C32484C3^2:3SD16144,58
C324SD16 = D12.S3φ: SD16/C4C22 ⊆ Aut C32484-C3^2:4SD16144,59
C325SD16 = C325SD16φ: SD16/C4C22 ⊆ Aut C32244+C3^2:5SD16144,60
C326SD16 = C3×C24⋊C2φ: SD16/C8C2 ⊆ Aut C32482C3^2:6SD16144,71
C327SD16 = C242S3φ: SD16/C8C2 ⊆ Aut C3272C3^2:7SD16144,87
C328SD16 = C3×D4.S3φ: SD16/D4C2 ⊆ Aut C32244C3^2:8SD16144,81
C329SD16 = C329SD16φ: SD16/D4C2 ⊆ Aut C3272C3^2:9SD16144,97
C3210SD16 = C3×Q82S3φ: SD16/Q8C2 ⊆ Aut C32484C3^2:10SD16144,82
C3211SD16 = C3211SD16φ: SD16/Q8C2 ⊆ Aut C3272C3^2:11SD16144,98


׿
×
𝔽